With the DLS software open click on tools and select Flash Wizard. In the Flash Wizard Utility click on Web and that will contact the Tyco servers to see if there are any flash updates that can be applied. Select which update you wish to apply by double clicking the update. It will ask to save the update to a location on your.
- DLS dialup customers should use mail.dls.net as the SMTP (outgoing) and POP3 (incoming) mail servers. For DLS web hosting customers, please see question 3.1. If you are dialing up outside of the Chicagoland area, you must use a mail client that supports SMTP authentication (such as Outlook Express or Netscape Messenger) and configure it to use.
- DLS2002SAPC4020V3.3.exe, DLS2002SAPC4020V3.5.exe or DLS2002 PC5020 v3.2SA.exe (it is only necessary to install the specific panel driver for the panel that you are using) 3. Run the DLS2002SA Software: Once the software has been installed, the icon (shown below) will appear on the desktop.
- Introducing DSC’s New DLS IV Software Packed with features, DLS IV offers live updates & so much more ISC WEST - Las Vegas, Nevada, Wednesday, April 1, 2009 – The new software release from DSC – DLS IV - is built with FLEXIBILITY and tomorrow in mind. Designed to work on Microsoft’s powerful.NET Framework 3.5 and SQL Server Express.
- DLS runs on Microsoft's.NET Framework 4.0 and now using SQLite database. If you do not currently have these software packages installed, they will be installed automatically during the DLS 5 installation process. Attachments below including a training guide and DLS software. Here is a brief run-down of the installation steps.
Find the Right Application
The Carbon DLS process is ideal for a wide range of applications, from high-value athletic equipment that delivers performance and protection to rugged automotive components that meet stringent engineering requirements.
Looking for inspiration? Subscribe to “Ask an Additive Expert,” our video series featuring answers to common design and engineering questions presented by Carbon’s experts.
DLS Design Quick Guide
Carbon DLS lets you design the best parts for your product, without worrying about moldability or machinability. Like every 3D printing process, DLS has its own best practices; follow these principles to get the best results in your applications.
This design quick guide offers a multi-step workflow to help you design and evaluate parts quickly. Follow the steps below to determine whether your part is a good fit for the DLS process and identify aspects of your design that might need revision.
Table of Contents
- Evaluate: determine whether your project is well-suited to DLS printing.
- Design: consider the 3D printing process you’ll use as you design your part
- Optimize: improve print outcomes by refining your design.
Evaluate
Begin by using these basic guidelines to determine whether your part is a good fit for Carbon DLS.
Build envelope
Will your part fit in Carbon’s 3D printers? For efficient production, consider how you’ll fit multiple parts in the build volume.
M1 | M2 | |
---|---|---|
X | 141 mm (5.6 in) | 189 mm (7.4 in) |
Y | 79 mm (3.1 in) | 118 mm (4.6 in) |
Z | 326 mm (12.8 in) | 326 mm (12.8 in) |
Material properties
What mechanical characteristics do you require for your parts? What traditional thermoplastics would you usually specify?
Resin | Ultimate tensile strength | Elongation at break | Tensile modulus | Shore hardness | Impact strength | Heat deflection temp | Comparable thermoplastic | Biocompatibility: cytotoxicity | |
---|---|---|---|---|---|---|---|---|---|
2 Part Resins | CE 221 | 85 MPa | 3% | 3900 MPa | 92D | 15 J/m | 230° C | Glass filled nylon | ✓ |
EPU 40 | 9 MPa | 300% | N/A | 68A | N/A | N/A | TPU | ✓ | |
EPU 41 | 15 MPa | 250% | N/A | 73A | N/A | N/A | TPU | ✓ | |
EPX 82 | 80 MPa | 5% | 2800 MPa | 89D | 45 J/m | 130° C | 20% glass-filled PBT | ✓ | |
FPU 50 | 29 MPa | 200% | 700 MPa | 71D | 40 J/m | 70° C | Polypropylene | ✓ | |
MPU 100 | 35 MPa | 15% | 1300 MPa | 81D | 30 J/m | 50° C | – | ✓ | |
RPU 70 | 40 MPa | 100% | 1700 MPa | 80D | 15 J/m | 60° C | ABS or PC ABS | ✓ | |
RPU 130 | 35 MPa | >50% | 920 MPa | 100D | 76 J/m | 119°C | Nylon 6 | – | |
SIL 30 | 3.4 MPa | 350% | N/A | 35A | N/A | N/A | TPE | ✓ | |
1 Part Resins | DPR 10 | 45 MPa | 4% | 1800 MPa | N/A | 20 J/m | 61° C | – | ✓ |
PR 25 | 29 MPa | >15% | 920 MPa | N/A | 18 J/m | 49° C | – | ✓ | |
UMA 90 | 30 MPa | 30% | 1400 MPa | 86D | 30 J/m | 45° C | – | ✓ |
Chemical compatibility
Does your part need to perform well when used with any of these common chemicals?
Class | Chemical | CE 221 | EPU 40 | EPU 41 | EPX 82 | RPU 70 | RPU 130 | SIL 30 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Household Chemicals | Bleach (NaClO, 5%) | E | E | E | E | E | – | E | ||||||||||||||||||||
Sanitizer (NH4Cl, 10%) | E | E | E | E | E | – | G | |||||||||||||||||||||
Distilled Water | E | E | E | E | E | – | G | |||||||||||||||||||||
Sunscreen (Banana Boat, SPF 50) | E | G | P | E | E | G | G | |||||||||||||||||||||
Detergent (Tide, Original) | E | E | G | E | E | – | G | |||||||||||||||||||||
Windex Powerized Formula | E | G | G | E | E | – | G | |||||||||||||||||||||
Hydrogen Peroxide (H2O2, 30%) | E | F | F | E | E | – | F | |||||||||||||||||||||
Ethanol (EtOH, 95%) | E | P | P | G | F | – | P | |||||||||||||||||||||
Industrial Fluids | Engine Oil (Havoline SAE 5W-30) | E | E | E | E | E | E | E | ||||||||||||||||||||
Brake Fluid (Castrol DOT-4) | E | F | F | E | E | – | P | |||||||||||||||||||||
Airplane Deicing Fluid (Type I Ethylene Glycol) | E | E | – | – | E | – | E | |||||||||||||||||||||
Airplane Deicing Fluid (Type I Propylene Glycol) | E | E | – | – | E | – | G | |||||||||||||||||||||
Airplane Deicing Fluid (Type IV Ethylene Glycol) | E | E | – | – | E | – | E | |||||||||||||||||||||
Airplane Deicing Fluid (Type IV Propylene Glycol) | E | E | – | – | E | – | G | |||||||||||||||||||||
Transmission Fluid (Havoline Synthetic ATF) | E | E | G | E | E | E | E | |||||||||||||||||||||
Engine Coolant (Havoline XLC, 50%/50% Premixed) | E | E | E | E | E | – | E | |||||||||||||||||||||
Diesel (Chevron #2) | E | P | P | E | E | E | F | |||||||||||||||||||||
Gasoline (Chevron #91) | E | P | – | – | P | – | P | |||||||||||||||||||||
Skydrol 500B-4 | E | P | P | E | G | – | P | |||||||||||||||||||||
Strong Acid/Base | Sulfuric Acid (H2SO4, 30%) | E | P | F | E | E | – | P | ||||||||||||||||||||
Sodium Hydroxide (NaOH, 10%) | E | E | E | E | E | – | E | |||||||||||||||||||||
Note: Due to variability in part geometry and level of exposure in actual use, it is required that adequate validation is done for production applications. | ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
* Percentages are percent weight lost after a 1 week submersion per ASTM D543. This is only a value of weight lost and not representative of changes in dimension or mechanical properties. |
Design
Once you have determined that your part is a good fit for the Carbon DLS process, the next step is to review your part’s features. Refer to the recommended feature sizes below to ensure your part’s printability.
Overhangs, unsupported angles, and unsupported wall thickness will inform the print orientation and support strategy for your part.
Recommended feature sizes
Are your features properly sized for successful printing?
FEATURE | RPU 70 | RPU 130 | MPU 100 | FPU 50 | CE 221 | EPX 82 | PR 25 | UMA 90 | EPU 40 EPU 41 | SIL 30 |
---|---|---|---|---|---|---|---|---|---|---|
Wall Thickness – Unsupported (mm) | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Wall Thickness – Supported (mm) | 1.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.5 |
Maximum Overhang (mm) | 2.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 1.0 | 1.0 |
Maximum Bridge (mm) | 4.0 | 4.0 | 6.0 | 4.0 | 6.0 | 4.0 | 6.0 | 6.0 | 2.0 | 2.0 |
Unsupported Angle from Horizontal (deg) | 30 | 40 | 40 | 35 | 40 | 40 | 30 | 30 | 40 | 40 |
Hole Size XY (mm) | 0.5 | 0.5 | 0.9 | 0.5 | 1.0 | 0.6 | 0.9 | 0.9 | 0.5 | 2.0 |
Hole Size Z (mm) | 0.6 | 0.5 | 0.8 | 0.5 | 0.7 | 0.9 | 0.6 | 0.8 | 0.5 | 2.0 |
Positive Feature Size XY (mm) | 0.4 | 0.3 | 0.4 | 0.5 | 0.4 | 0.3 | 0.6 | 0.4 | 0.5 | 1.0 |
Positive Feature Size Z (mm) | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 1.0 |
Engraving Depth / Embossing Height (mm) | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 |
Text Size, Engraved / Embossed (mm) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.5 |
Clearance Between Mating Parts (mm) | 0.4 | 0.5 | 0.5 | 0.5 | 0.8 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 |
Holes
To compensate for overcure, horizontal holes should be oversized ~0.04 mm.
Unsupported angles
Measured relative to the platform (XY). Unsupported angles over 40 degrees are safe for all materials.
Bridges
Bridges should span no more than twice the recommended overhang distance.
Fillets
Interior corners: ~0.5 mm minimum
Exterior corners: ~0.5 mm + wall thickness
Mating parts
Print mating parts in the same orientation.
Wall thickness
Walls at minimum thickness should be kept short.
Optimize
Refine your design using these guidelines to ensure dimensional accuracy, excellent surface quality, and overall performance that meets your requirements.
Issues to address before adding supports
Consider these recommendations as you design your part.
Low resolution model
Adjust export settings in your CAD software to make a smooth model.
Unvented volumes and blind holes
Dls 5 Manual
Add 2-3 mm vents or re-orient part.
Dsc Dls Iv Software
Slice islands
Islands must be supported or connected to part in order to prevent print defects.
Non-uniform, rapidly changing or stepped wall thickness
Make wall thickness uniform, or keep changes in thickness as gradual as possible in order to minimize print defects and prevent warping during baking.
Tall, thin parts
Change orientation, or redesign to reduce part height and/or create stability.
Supports
Use Carbon’s print preparation software to add supports to your part design.
- Check overhangs and unsupported angles using the Overhang Detection feature
- Place supports no closer than the recommended overhang distances from part walls and other supports
- Ensure that slice islands are supported
- Use the Advanced Supports feature to ensure first-print success
- Reinforce supports that are longer than 76 mm. Fences can use bar supports as reinforcement.
Dls Iv Software And A Pc-link Cable
First-print accuracy
Dsc Dls Iv Software Download
- Accuracy is dependent on many factors, including:
- Part geometry
- Resin
- Baking method
- For your first print, assume accuracy of ±0.200 mm as a general guide
- Iterate on design, orientation, and/or support structures as needed to improve accuracy